easy_vision.python.model.text_recognition¶
easy_vision.python.model.text_recognition.text_attn_head¶
-
class
easy_vision.python.model.text_recognition.text_attn_head.
TextAttentionHead
(feature_dict, head_config, vocab_size, label_dict=None, mode='predict', is_end2end=False)[source]¶ Bases:
easy_vision.python.model.cv_head.CVHead
Attention head for text recognition
-
__init__
(feature_dict, head_config, vocab_size, label_dict=None, mode='predict', is_end2end=False)[source]¶ Parameters: - feature_dict – a dict of feature tensors
- head_config – protos.text_head_pb2.TextAttentionHead
- vocab_size – the number of characters
- label_dict – a dict of labels tensors
- is_training – train or not(eval/predict)
- is_end2end – in end2end ocr mode or not
-
easy_vision.python.model.text_recognition.text_ctc_head¶
-
class
easy_vision.python.model.text_recognition.text_ctc_head.
TextCTCHead
(feature_dict, head_config, vocab_size, label_dict=None, mode='predict', is_end2end=False)[source]¶ Bases:
easy_vision.python.model.cv_head.CVHead
CTC head for text recognition
-
__init__
(feature_dict, head_config, vocab_size, label_dict=None, mode='predict', is_end2end=False)[source]¶ Parameters: - feature_dict – a dict of feature tensors
- head_config – protos.text_head_pb2.TextCTCHead
- vocab_size – the number of characters
- label_dict – a dict of labels tensors
- is_training – train or not(eval/predict)
- is_end2end – in end2end ocr mode or not
-
easy_vision.python.model.text_recognition.text_recognition_helper¶
-
easy_vision.python.model.text_recognition.text_recognition_helper.
summary_text_recognition_metric
(groundtruth_text, sequence_predict_ids, sequence_probability, char_dict)[source]¶ Summary metrics for text recognition
Parameters: - groundtruth_text – batch of groundtruth text, a string tensor of shape [batch_size]
- sequence_predict_ids – batch of predict text character ids, a int32 tensor of shape [batch_size, max_sequence_length]
- sequence_probability – batch of predict text probabilities, a float32 tensor of shape [batch_size]
- char_dict – A instance of CharDict
easy_vision.python.model.text_recognition.text_recognition_model¶
-
class
easy_vision.python.model.text_recognition.text_recognition_model.
TextRecognitionModel
(model_config, feature_dict, label_dict=None, mode='predict', char_dict_path=None)[source]¶ Bases:
easy_vision.python.model.cv_model.CVModel
-
__init__
(model_config, feature_dict, label_dict=None, mode='predict', char_dict_path=None)[source]¶ x.__init__(…) initializes x; see help(type(x)) for signature
-
build_metric_graph
(eval_config)[source]¶ add metrics ops to graph :param eval_config: protobufer object, see python/protos/eval.proto.
Returns: a dict of metric_op, each metric_op is a tuple of (update_op, value_op) Return type: metric_dict
-
classmethod
create_class
(name)¶
-
easy_vision.python.model.text_recognition.text_transformer_head¶
-
class
easy_vision.python.model.text_recognition.text_transformer_head.
TextTransformerHead
(feature_dict, head_config, vocab_size, label_dict=None, mode='predict', is_end2end=False)[source]¶ Bases:
easy_vision.python.model.cv_head.CVHead
Transformer head for text recognition
-
__init__
(feature_dict, head_config, vocab_size, label_dict=None, mode='predict', is_end2end=False)[source]¶ Parameters: - feature_dict – a dict of feature tensors
- head_config – protos.text_head_pb2.TextAttentionHead
- vocab_size – the number of characters
- label_dict – a dict of labels tensors
- is_training – train or not(eval/predict)
- is_end2end – in end2end ocr mode or not
-