easy_vision.python.custom_code¶
easy_vision.python.custom_code.custom_input¶
-
class
easy_vision.python.custom_code.custom_input.CustomInput(dataset_config)[source]¶ Bases:
easy_vision.python.input.cv_input.CVInput-
__init__(dataset_config)[source]¶ Init input object
Parameters: dataset_config – easy-vision protobuf object, easy_vision.python.protos.dataset_pb2.DatasetConfig
-
classmethod
create_class(name)¶
-
easy_vision.python.custom_code.custom_model¶
-
class
easy_vision.python.custom_code.custom_model.CustomClassificationModel(model_config, feature_dict, label_dict=None, mode='predict')[source]¶ Bases:
easy_vision.python.model.cv_model.CVModel-
__init__(model_config, feature_dict, label_dict=None, mode='predict')[source]¶ Init classification model
Parameters: - model_config – a protobuf config object
- feature_dict – a dict of tensor, used as features
- label_dict – a dict of tensor, used as labels
- mode – indicates to build a graph for train, evaluate or predict
- categories – a list of dicts, each dist has two keys id and name
-
build_loss_graph()[source]¶ calculate classification loss
Parameters: - NxC tensor, where N is batch num, C is number of classes (self._prediction_dict['logits']) –
- N tensor (self._label_dict['groundtruth_image_classes']) –
Returns: a dict of tensor containing different kinds of loss
Return type: loss_dict
-
build_metric_graph(eval_config)[source]¶ add metrics ops to graph
Parameters: eval_config – protobufer object, see python/protos/eval.proto. Returns: a dict of metric_op, each metric_op is a tuple of (update_op, value_op) Return type: metric_dict
-
classmethod
create_class(name)¶
-
-
class
easy_vision.python.custom_code.custom_model.PyEvaluator[source]¶ Bases:
easy_vision.python.evaluation.evaluator.Evaluator-
__init__()[source]¶ Construct eval ops from tensor
Parameters: list of string, metric names this evaluator will return (metric_names) –
-