easy_vision.python.model.multilabel_classification¶
easy_vision.python.model.multilabel_classification.multi_label_head¶
-
class
easy_vision.python.model.multilabel_classification.multi_label_head.
MultiLabelHead
(feature_dict, head_config, label_dict=None, mode='predict')[source]¶ Bases:
easy_vision.python.model.cv_head.CVHead
-
__init__
(feature_dict, head_config, label_dict=None, mode='predict')[source]¶ Parameters: - feature_dict – must include two parts: 1. backbone output features 2. preprocessed batched image shape(preprocessed_input_shape)
- head_config – easy_vision.python.estimator.multi_label_head.MultiLabelClassificationHead
- is_training – train or not(eval/predict)
-
build_loss_graph
()[source]¶ calculate classification loss
Parameters: - NxC tensor, where N is batch num, C is number of classes (self._prediction_dict['prob']) –
- NxC tensor, one-hot encoding label (self._feature_dict['label']) –
Returns: a dict of tensor containing different kinds of loss
Return type: loss_dict
-
easy_vision.python.model.multilabel_classification.multilabel_classification_model¶
-
class
easy_vision.python.model.multilabel_classification.multilabel_classification_model.
MultiLabelClassificationModel
(model_config, feature_dict, label_dict=None, mode='predict', categories=None)[source]¶ Bases:
easy_vision.python.model.cv_model.CVModel
-
__init__
(model_config, feature_dict, label_dict=None, mode='predict', categories=None)[source]¶ Init classification model
Parameters: - model_config – a protobuf config object
- feature_dict – a dict of tensor, used as features
- label_dict – a dict of tensor, used as labels
- mode – indicats to build a model used in train, evaluate, predict
- categories – a list of dicts, each dist has two keys id and name
-
build_metric_graph
(eval_config)[source]¶ add metrics ops to graph :param eval_config: protobufer object, see python/protos/eval.proto.
Returns: metric_dict, a dict of metric_op, each metric_op is a tuple of (update_op, value_op)
-
build_predict_graph
()[source]¶ build classification network
Parameters: self._prediction_dict['preprocessed_images'] – a tensor of size [batch_size, h, w, c] Returns: a tensor of size [batch_size, num_classes], the logits self._prediction_dict[‘prob’]: a tensor of size [batch-size, num_classes], the softmax of logits Return type: self._prediction_dict[‘logits’]
-
classmethod
create_class
(name)¶
-