easy_vision.python.model.text_end2end¶
easy_vision.python.model.text_end2end.text_end2end_helper¶
-
easy_vision.python.model.text_end2end.text_end2end_helper.
build_instance_keypoints_inds
(keypoints)[source]¶ - Build instance_keypoints inds for ThinPlateSpline, boxes inds indicates
- the feature map [NHWC] each boxes will crop on.
Parameters: keypoints – A float32 tensor with shape [batch_size, num_instances, num_keypoints, 2]. Returns: - tensor(int32), an array of image ids of each instance belongs to
- one example: [[ 0, 0, 0, 0 …], [1, 1, 1, …], [2,2,2… ]]
-
easy_vision.python.model.text_end2end.text_end2end_helper.
concat_bucket_tensor
(key, tensor_dicts, pad_value=0)[source]¶ Concat tensor in bucket tensor_dicts :param key: tensor name :param tensor_dicts: list of bucket tensor dict to be concatenated :param pad_value: constant pad value for tf.pad
Returns: concatenated tensor
-
easy_vision.python.model.text_end2end.text_end2end_helper.
fixed_height_tps
(features, normalized_keypoints, instance_inds, aspect_ratios, height, random_distortion=False)[source]¶ ThinPlateSpline to a fixed size feature :param features: A float32 feature tensor with shape
[batch_size, height, width, depth]Parameters: - normalized_keypoints – normalized keypoints coords on image with shape [num_instance, num_keypoints, 2]
- instance_inds – an array of image ids of each instance belongs to one example with shape [num_instance]
- aspect_ratios – aspect_ratio of keypoint boxes with shape [num_instance]
- height – ThinPlateSpline output feature height
Returns: - ThinPlateSpline output features with shape
[num_instance, height, width, depth]
- stn_features_shape: ThinPlateSpline output feature valid shape with
shape [num_instance, 2]
Return type: stn_features
-
easy_vision.python.model.text_end2end.text_end2end_helper.
fixed_sized_tps
(features, normalized_keypoints, instance_inds, aspect_ratios, height, width, random_distortion=False)[source]¶ ThinPlateSpline to a fixed size feature :param features: A float32 feature tensor with shape
[batch_size, height, width, depth]Parameters: - normalized_keypoints – normalized keypoints coords on image with shape [num_instance, num_keypoints, 2]
- instance_inds – an array of image ids of each instance belongs to one example with shape [num_instance]
- aspect_ratios – aspect_ratio of keypoint boxes with shape [num_instance]
- height – ThinPlateSpline output feature height
- width – ThinPlateSpline output feature width
- random_distortion – with random distort keypoints or not
Returns: - ThinPlateSpline output features with shape
[num_instance, height, width, depth]
- stn_features_shape:ThinPlateSpline output feature valid shape with
shape [num_instance, 2]
Return type: stn_features
easy_vision.python.model.text_end2end.text_end2end_model¶
-
class
easy_vision.python.model.text_end2end.text_end2end_model.
TextEnd2EndModel
(model_config, feature_dict, label_dict=None, mode='predict', categories=None, char_dict_path=None)[source]¶ Bases:
easy_vision.python.model.cv_model.CVModel
-
__init__
(model_config, feature_dict, label_dict=None, mode='predict', categories=None, char_dict_path=None)[source]¶ x.__init__(…) initializes x; see help(type(x)) for signature
-
build_metric_graph
(eval_config)[source]¶ add metrics ops to graph :param eval_config: protobufer object, see python/protos/eval.proto.
Returns: a dict of metric_op, each metric_op is a tuple of (update_op, value_op) Return type: metric_dict
-
classmethod
create_class
(name)¶
-
easy_vision.python.model.text_end2end.text_feature_gather¶
-
class
easy_vision.python.model.text_end2end.text_feature_gather.
FixedHeightFeatureGather
(config, is_training)[source]¶ Bases:
easy_vision.python.model.text_end2end.text_feature_gather.TextFeatureGather
Gather text feature within ROI defined to a fixed height feature
-
max_aspect_ratio
¶
-
min_aspect_ratio
¶
-
num_buckets
¶
-
-
class
easy_vision.python.model.text_end2end.text_feature_gather.
FixedHeightPyramidFeatureGather
(config, is_training)[source]¶ Bases:
easy_vision.python.model.text_end2end.text_feature_gather.TextFeatureGather
Gather text feature within ROI defined to a fixed height feature
-
max_aspect_ratio
¶
-
min_aspect_ratio
¶
-
num_buckets
¶
-
-
class
easy_vision.python.model.text_end2end.text_feature_gather.
FixedSizeFeatureGather
(config, is_training)[source]¶ Bases:
easy_vision.python.model.text_end2end.text_feature_gather.TextFeatureGather
Gather text feature within ROIs defined to fixed size features
-
max_aspect_ratio
¶
-
min_aspect_ratio
¶
-
num_buckets
¶
-
-
class
easy_vision.python.model.text_end2end.text_feature_gather.
TextFeatureGather
(config, is_training)[source]¶ Bases:
object
Gather text feature within ROIs defined by normalized_keypoints
-
gather
(feature_dict)[source]¶ crop and correct distortion for roi features
Parameters: contain following keys (feature_dict) – - config.input_layer: backbone feature maps with shape
- [batch_size, height, width, depth]
- normalized_keypoints: detection keypoints within value range [0, 1]
- with shape [num_instance, num_keypoints, 2]
- instance_inds: an array of image ids of each instance belongs to
- one example with shape [num_instance]
aspect_ratios: aspect_ratio of keypoint boxes with shape [num_instance] normalized_boxes: (optional) detection boxes with value range [0, 1]
with shape [num_instance, 4], used when visualizationvisualized_image: (optional) image after preprocess
Returns: text_stn_features: cropped and corrected distortion roi features text_stn_features_shape: true shape of text_stn_features text_roi_features: if visualize, return cropped roi features text_roi_images: if visualize, return cropped image text_stn_images: if visualize, return cropped and corrected distortion image text_stn_images_shape: if visualize, return true shape of text_stn_images text_stn_keypoints: alias for normalized_keypoints Return type: result_dict contain following keys
-
ignore_recog_classes
¶
-
max_aspect_ratio
¶
-
min_aspect_ratio
¶
-
num_buckets
¶
-
subsample_batch_size
¶
-