easy_vision.python.model.rfcn¶
easy_vision.python.model.rfcn.fcn_head¶
-
class
easy_vision.python.model.rfcn.fcn_head.
FCNHead
(feature_dict, head_config, label_dict=None, mode='predict')[source]¶ Bases:
easy_vision.python.model.faster_rcnn.rcnn_head.RCNNHead
for the second stage of rfcn: classification based on position sensitive pooling
-
__init__
(feature_dict, head_config, label_dict=None, mode='predict')[source]¶ see rcnn_head.py for parameter explanations
-
build_predict_graph
()[source]¶ input: proposal_boxes, feature_map output:
refined_box_encodings_with_background, class_predictions_with_background- steps:
- classify block: extract classification features with backbone features as input.
- using box_predictor to generate box scores and encodings predictions. 2.1 conv2d to generate position sensitive score maps and box offset maps. 2.2 psroipooling on score preds and box_encodings.
-
easy_vision.python.model.rfcn.rfcn¶
-
class
easy_vision.python.model.rfcn.rfcn.
RFCN
(model_config, feature_dict, label_dict=None, mode='predict', categories=None)[source]¶ Bases:
easy_vision.python.model.faster_rcnn.faster_rcnn.FasterRcnn
-
__init__
(model_config, feature_dict, label_dict=None, mode='predict', categories=None)[source]¶ x.__init__(…) initializes x; see help(type(x)) for signature
-
classmethod
create_class
(name)¶
-